

CSC 495.002 – Lecture 14 Privacy Perceptions: Privacy Attitudes

Dr. Özgür Kafalı

North Carolina State University Department of Computer Science

Fall 2017

PREVIOUSLY ON PRIVACY PERCEPTIONS

Westin Categories

- How Westin's survey evolved over time
- Limitations/criticism to Westin's privacy index
- Alternative studies to Westin

Problem Definition

- What changes in privacy behavior and attitudes among different cultures?
- What factors cause such changes?
- Mental models of humans for privacy decision making

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	2 / 52
NC STATE UNIVERSITY	PRIVACY ATTIT	udes Proi	BLEM
Networked Priva	acv		

- A model of privacy that is networked
- "Networked privacy invokes the constellation of audience dynamics, social norms, and technical functionality that affect the processes of information disclosure, concealment, obscurity, and interpretation within a networked public."
- Privacy in social networks cannot only be controlled by individuals
 - Not completely depend on individual choices
 - No absolute control over own data

Marwick and Boyd. Networked privacy: How teenagers negotiate context in social media. New Media & Society, 16(7):1051–1067, 2014

Transitional and Contextual Privacy

NC STATE

UNIVERSIT

- <u>Transitional</u>: Even if a user makes a picture available to only three friends, these friends can easily disseminate it further
- <u>Contextual</u>: Privacy violations occur once information slips to a different context with different norms

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	4 / 52
NC STATE UNIVERSITY	TECHNIQU	JES & STU	IDIES
Studies			
 America Europe Asia mTurk worke 	udes among countries and cultures [2	papers]	

TECHNIQUES & STUDIES

Us and Them

Us and Them: A Study of Privacy Requirements Across North America, Asia, and Europe

Swapneel Sheth, Gail Kaiser Department of Computer Science Columbia University New York, NY, USA {swapneel, kaiser}@cs.columbia.edu

Walid Maalej Department of Informatics University of Hamburg Hamburg, Germany maalej@informatik.uni-hamburg.de

ABSTRACT

ABSTRACT Data privacy when using online systems like Facebook and Amazon has become an increasingly popular topic in the last few years. However, only a little is known about how users and developers perceive privacy and which concrete measures would mitigate their privacy concerns. To investigate privacy requirements, we conducted an online survey with closed and open questions and collected 408 valid responses. Our results show that users often reduce privacy to security, with data sharing and data breaches being their biggest concerns. Users are more concerned about the content of their documents and their personal data such as location than about their interaction data. Unlike users, developers clearly prefer technical measures like data anonymization and think that privacy laws and policies are less effective. We also observed interesting differences between people from different geographies. For example, people from Europe We also observed interesting differences between people from different geographies. For example, people from Europe are more concerned about data breaches than people from North America. People from Asia/Pacific and Europe believe that content and metadata are more critical for privacy than people from North America. Our results contribute to developing a user-driven privacy framework that is based on empirical evidence in addition to the legal, technical, and commercial perspectives.

1. INTRODUCTION

1. INTRODUCTION As systems that collect and use personal data, such as Facebook and Amazon, become more pervasive in our daily lives, users are starting to worry about their privacy. There has been a lot o media coverage about data privacy. One of the artifiest articles in the New York Times reported how it was possible to break the anonymity of AOU's search engine's users [7]. A more recent article mentions privacy concerns about Google Glass [29]. Both technical and, especially, non-technical users are finding it increasingly hard to navigate this privacy minefield [21]. This is further exacerbated by well-known systems periodically making changes that breach privacy and not allowing users to opt out a-priori [19]. There is a large body of research on privacy in vari-nue research communities. This ranges from data anony-mization techniques in different domains [13, 23, 35, 40], to approaches to make privacy settings more understand-able [18, 34]. Recent studies have shown that there is a discrepancy between users' intentions and reality for privacy

able [16, 34]. Recent studies nave snown that there is a discrepancy between users' intentions and reality for privacy settings [24, 27]. The assumption behind most of this work is that privacy is well-specified and important. However, there is very little evidence about what exactly are the user concerns, priorities, and trade-offs, and how users think these concerns, and be mitigated. In particular, in the software en-gineering community, there have been no systematic studies

Sheth et al. Us and Them: A Study of Privacy Requirements Across North America, Asia, and Europe. International Conference on Software Engineering (ICSE), pages 859-870, 2014

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	6 / 52

TECHNIQUES & STUDIES

Objective and Research Questions

- Objective: Understand (data) privacy expectations from modern software systems
- What are developers' and users' perceptions of privacy?
- Does experience in software development have any impact on privacy requirements?
- Does geography have any impact on privacy requirements?

Contributions

- Demonstrate general trends on how users understand privacy
- Understand how users assess privacy concerns
- Identify privacy expectations
- Provide insights into how software engineers can analyze privacy concerns of users

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	8 / 52

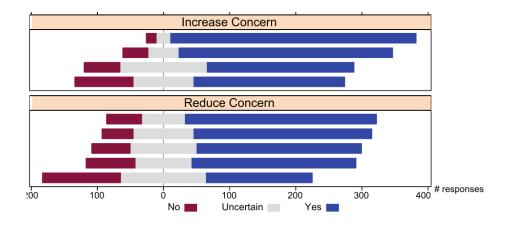
NC STATE UNIVERSITY TECHNIQUES & STUDIES

Methodology: Participants

	Developers	Users
North America	85	44
Europe	116	65
Asia	61	30
South America	3	2
Africa	2	0

UNIVERSITY

Factors to Increase Privacy Concerns

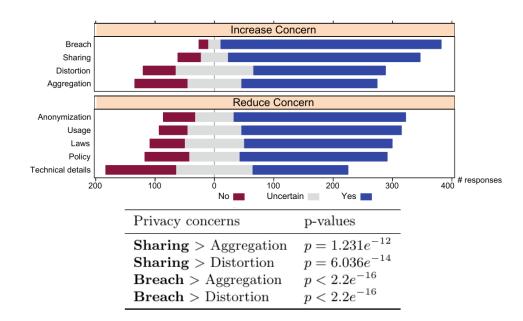

- Data Aggregation: The system discovers additional information about the user by aggregating data over a long period of time
- Data Distortion: The system might misrepresent the data or user intent
- Data Sharing: The collected data might be given to third parties for purposes like advertising
- Data Breaches: Malicious users might get access to sensitive data about other users

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	10 / 52
	Techniqu	jes & Stu	DIES

Factors to Reduce Privacy Concerns

- Privacy Policy, License Agreements: Describing what the system will/won't do with the data
- Privacy Laws: Describing which national law the system is compliant with (e.g., HIPAA in the US, European privacy laws)
- Anonymizing all data: Ensuring that none of the data has any personal identifiers
- Technical Details: Describing the algorithms/source code of the system in order to achieve higher trust (e.g., encryption of data)
- Details on usage: Describe, e.g., in a table how different data are used

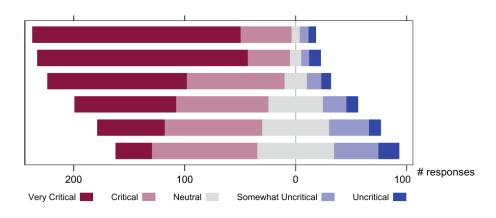
Exercise: Factors to Increase and Reduce Concerns



- Increase: Aggregation, Distortion, Sharing, Breaches
- Reduce: Policy, Laws, Anonymization, Technical details, Usage

NC STATE UNIVERSITY TECHNIQUES & STUDIES

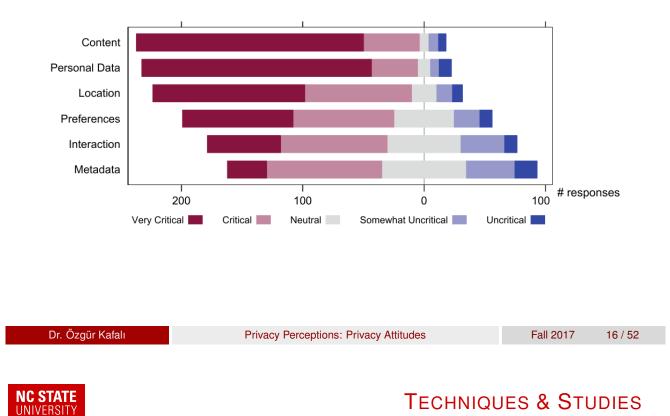
Factors to Increase and Reduce Concerns



Exercise: Additional Concerns

- Authorities and intelligence services: Government access [13/66]
- Malicious software or sharing data over APIs: Google Analytics [9/66]
- Unusable and nontransparent policies: Long, convoluted, hard to read [7/66]
- Lack of control: Options to delete data [7/66]

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	14 / 52
NC STATE	TECHNIQU	ies & Stl	JDIES


Exercise: Criticality of Types of Data

 Content (email body), metadata (date), interaction (mouse click to open email), location (city email is sent from), name (email address), user preferences (email settings)

Criticality of Types of Data

Giving up Privacy

- Would you accept less privacy for the following:
- Monetary discounts
- Added functionality of the system
- Fewer ads
- 37% accepts less privacy for added functionality
- 21% accepts less privacy for monetary discounts
- 14% accepts less privacy for fewer ads

Developers vs Users

- Data distortion: 49% of developers vs 65% of users
- Data aggregation: 52% of developers vs 63% of users
- Data criticality: Name, personal data, and interaction are more critical for developers
- Added functionality: 43% of developers give up privacy

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	18 / 52
NC STATE UNIVERSITY	TECHNIQU	JES & STU	JDIES

Role of Geography

- America thinks all types of data are less critical than Europe and Asia
- No statistically significant difference between Europe and Asia
- Added functionality: 51% of Europe does not give up, only 24% for America
- Europe feels that providing usage details is more effective than laws and policies
- America feels these options are all equal

Components of Privacy Framework

- Anonymization
- Data usage details
- Default encryption
- Fine-grained control
- Time and space limited storage
- Policies and laws

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes Fall 2017		20 / 52
	TECHNIQU	IES & STI	JDIES
UNIVERSITY			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Who is Concerned About What?

Who Is Concerned about What? A Study of American, Chinese and Indian Users' Privacy Concerns on Social Network Sites (Short Paper)

Yang Wang, Gregory Norcie, Lorrie Faith Cranor

School of Computer Science Carnegie Mellon University, U.S.A. {wang,ganorcie,lorrie}@cs.cmu.edu

Abstract. We present a study that investigates American, Chinese, and Indian social networking site (SNS) users' privacy attitudes and practices. We conducted an online survey of users of three popular SNSs in these countries. Based on 924 valid responses from the three countries, we found that generally American respondents were the most privacy concerned, followed by the Chinese and Indians. However, the US sample exhibited the lowest level of desire to restrict the visibility of their SNS information to certain people (e.g., co-workers). The Chinese respondents showed significantly higher concerns about identity issues on SNS such as fake names and impersonation.

Wang et al. Who is Concerned About What? A Study of American, Chinese and Indian Users' Privacy Concerns on Social Network Sites. International Conference on Trust and Trustworthy Computing, pages 146–153, 2011

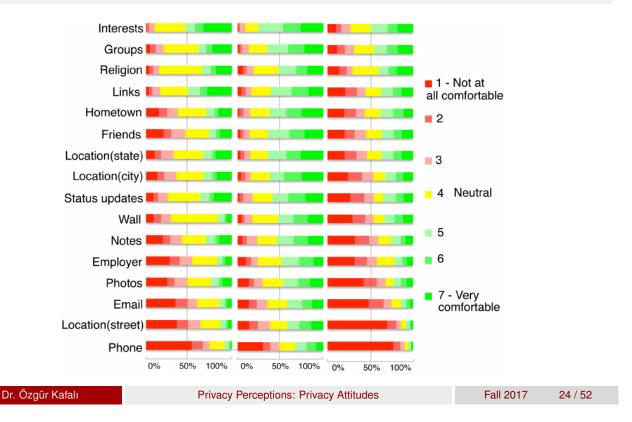
Survey Design

- Countries: US, China, India
- Social network sites:
 - Facebook: Highest traffic in US and India
 - Renren.com and Kaixin001.com: Domestic sites for China
- Common features: Profiles, walls, photo sharing, games, third party app development

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	22 / 52

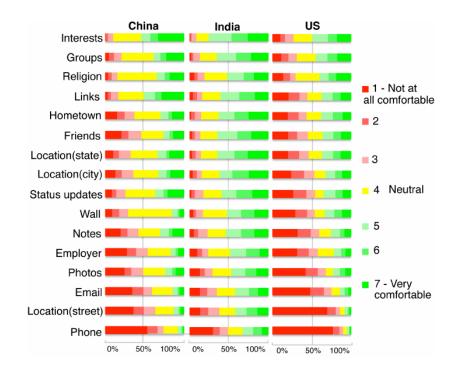
NC STATE UNIVERSITY TECHNIQUES & STUDIES

Demographics


		China	India	US
Sample size		291	312	321
Gender ***	Men	56.4%	60.9%	36.4%
Gender ***	Women	43.6%	39.1%	63.6%
A ~~ ***	Mean	23.5	27.1	31.4
Age ***	SD	3.8	6.7	11.0
IT education or career ***	IT	41.6%	65.7%	12.1%
IT education of career ***	Non-IT	58.4%	34.3%	87.9%
At least some college educa	tion	88.3%	90.7%	86.0%

Note: *, **, *** statistical significance at p<.05, .001, .0001

TECHNIQUES & STUDIES


Exercise: Privacy Attitudes

NC STATE UNIVERSITY

TECHNIQUES & STUDIES

Exercise: Privacy Attitudes

Attitude Dimensions

c.,, statistical signifi	leanee	at p <	55, .00	1,.0
		China		
Privacy sensitivity score ***	Mean SD	4.2 1.1	3.3	4.7
	~			
Privacy concern score ***	Mean SD	4.8 0.9	4.6 0.9	
	52		0.12	
Lack-of-trust score ***	Mean SD	3.4 1.0	3.2 1.0	
Desire-to-restrict score *	Mean	4.8	4.6	4.2
Desire-to-result score	SD	1.2	1.2	1.4

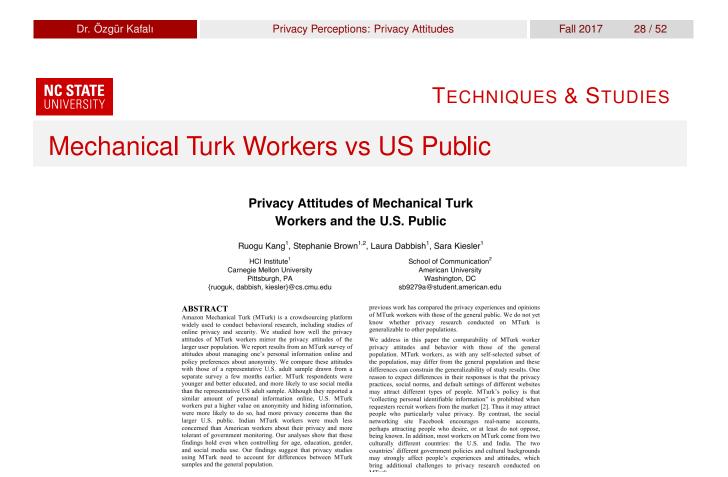
Note: *, **, *	*** statistical	significance a	p < .05.	.0010)001
1,010. , ,	statistical	significance a	n p < .00		JUU1

Dr. Özgür Kafalı

Privacy Perceptions: Privacy Attitudes

Fall 2017 26 / 52

NC STATE UNIVERSITY **TECHNIQUES & STUDIES**


Fake Names and Impersonation

Note: *, **, *** statistical significance	e at p<	.05, .00	01,.0001
	China	India	US
Have friends use fake names ***	45.7%	39.3%	18.5%
Concerned about impersonation ***	36.3%	19.4%	28.6%

Implications

- Recurring pattern: US > China > India
- Previous research on Chinese social network users
 - Venue for meeting new people and entertainment
 - Generally not privacy concerned
 - However, particularly concerned about identity issues

Kang et al. Privacy Attitudes of Mechanical Turk Workers and the U.S. Public. Symposium on Usable Privacy and Security (SOUPS), pages 37–49, 2014

Privacy Perceptions: Privacy Attitudes

mTurk Workers

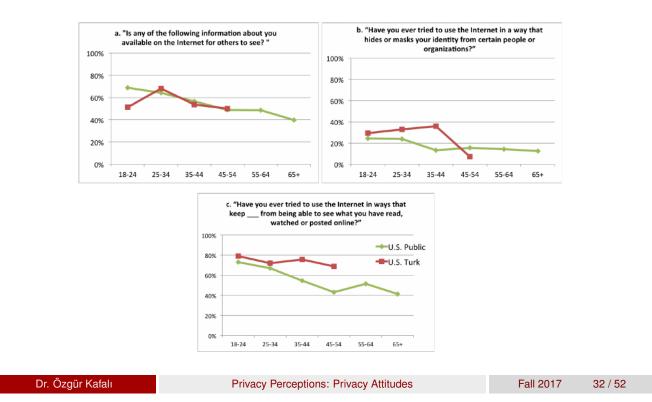
- Chosen an anonymous, flexible worksite
- Compared to the general population
 - Better educated
 - More liberal
 - Younger

Dr	\cap	aür	Kafalı
וט.	02	.yui	Nalali

Privacy Perceptions: Privacy Attitudes

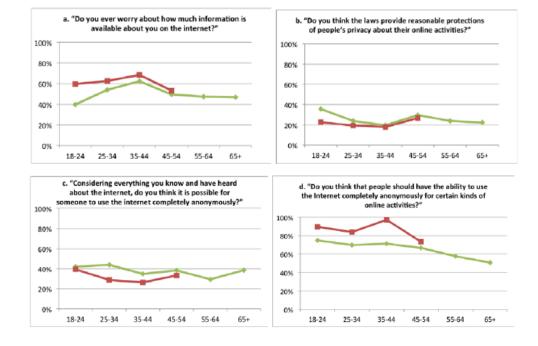
Fall 2017 30 / 52

NC STATE UNIVERSITY


TECHNIQUES & STUDIES

Demographics: US Public vs mTurk

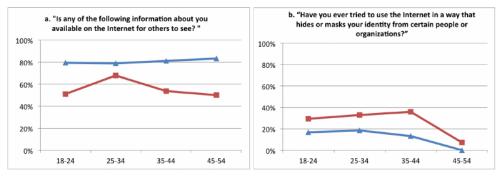
Demographic	U.S.	U.S.	Indian
Characteristics	Public	Turk	Turk
Ν	775	182	128
Age			
18-24	12%	24%	23%
25-34	14%	41%	56%
35-44	13%	23%	12%
45-54	17%	9%	5%
55-64	24%	3%	2%
65+	19%	1%	2%
Mean age	49.8	32.7	30.5
	<i>F</i> [2,1080] = 122.72, <i>p</i> < .001		
Gender			
Female	50%	42%	35%
Male	50%	57%	65%
	X^2 [2, 1084] = 11.76, $p < .01$		
Education			
High school or less	26%	12%	5%
Some college	31%	45%	14%
College and more	42%	43%	81%
	F [2,1080] = 24.62, p < .001		
Percent who use social media	68%	90%	98%
	$X^{2}[2,1085] = 97.04, p < .001$		

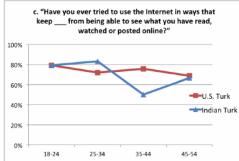

Personal Information: US Public vs US mTurk

TECHNIQUES & STUDIES

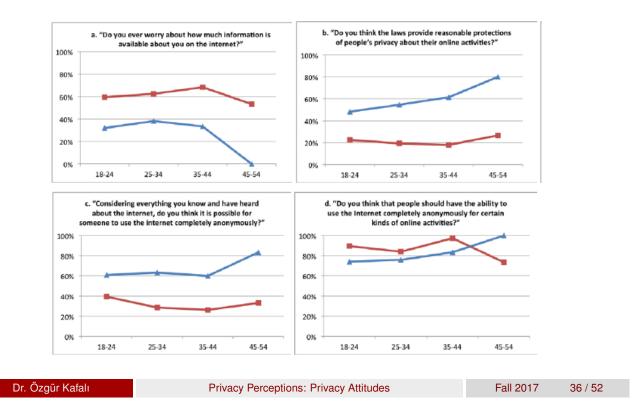
Privacy Preferences: US Public vs US mTurk

Findings


- On four of seven items US mTurk workers differs from US sample
- Even when demographic variables and social media use are taken into account
- Show similar trends based on age



TECHNIQUES & STUDIES


Personal Information: US mTurk vs India mTurk

Privacy Preferences: US mTurk vs India mTurk

UNIVERSITY

TECHNIQUES & STUDIES

Implications

- mTurk workers more tech savvy than the general public
- Limitation: Survey for the US public did not ask questions about technology use

My Data Just Goes Everywhere

"My Data Just Goes Everywhere:" User Mental Models of the Internet and Implications for Privacy and Security

Ruogu Kang¹, Laura Dabbish^{1,2}, Nathaniel Fruchter¹, Sara Kiesler¹ Human-Computer Interaction Institute¹, Heinz College²

Carnegie Mellon University

Pittsburgh, PA

{ruoguk, dabbish, nhf, kiesler}@andrew.cmu.edu

ABSTRACT

Many people use the Internet every day yet know little about how it really works. Prior literature diverges on how people's Internet knowledge affects their privacy and security decisions. We undertook a qualitative study to understand what people do and do not know about the Internet and how that knowledge affects their responses to privacy and security risks. Lay people, as compared to those with computer science or related backgrounds, had simpler mental models that omitted Internet levels, organizations, and entities. People with more articulated technical models perceived more privacy threats, possibly driven by their more accurate understanding of where specific risks could occur in the network. Despite these differences, we did not find a direct relationship between people's technical background and the actions they took to control their privacy or increase their security online. Consistent with other work on user knowledge and experience, our study suggests a greater emphasis on policies and systems that protect privacy and security without relying too much on user's security practices. network providers, web services, search engines, and ad networks. More personal data than ever is transmitted via the Internet as mobile access proliferates [9] and service providers expand their tracking, creating privacy and security challenges far beyond the ability of end users to manage [38]. Network security tools are not widely used and do not help users understand why or how well they work.

The Internet is not an automated device that works in a simple way to accomplish simple goals. Users have to make decisions that affect their privacy and security, ranging from whether to access public Wi-Fi at an airport to how to share a file with a colleague to constructing a new password for a shopping site. We don't know the influence of users' understanding of the Internet on their daily privacy and security practices on the Internet. Does technical knowledge about the Internet help people make good privacy-protecting decisions?

Some previous work has explored user mental models of networking, but has mainly focused on specific domains such as home networking [30,42] and wireless Internet access [24], or

Kang et al. My Data Just Goes Everywhere: User Mental Models of the Internet and Implications for Privacy and Security. Symposium On Usable Privacy and Security (SOUPS), pages 39–52, 2015

Dr. Özgür Kafalı

Privacy Perceptions: Privacy Attitudes

Fall 2017 38 / 52

TECHNIQUES & STUDIES

 Explore the correlation between people's technology background and their privacy related actions

Knowledge of Internet

NC STATE

- Declarative knowledge: Knowledge about facts and terms (e.g., privacy settings, tagging, bcc)
- Procedural knowledge: How to take actions and complete tasks
- Technical familiarity
- Awareness of institutional practices
- Policy understanding
- User skills
- Awareness of security threats and tools

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	40 / 52
NC STATE UNIVERSITY	TECHNIQ	JES & STU	DIES
Mental Models			

- Semi-structured interviews to understand users' mental models
- Participants draw diagrams about certain concepts
- Experts (faculty members in computer networking and security) review their drawings

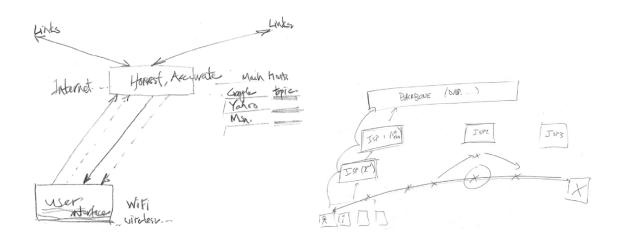
TECHNIQUES & STUDIES

Participants

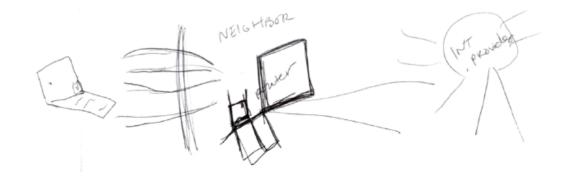
Identifier	Gender	Age	Education background		
Lay partici			Education background		
N01	M	Finance			
		19			
N02	M	22	Finance		
N03	M	22	Biomedical Engineering		
N04	F	18	Geology		
N05	F	22	English		
N06	М	22	Law		
N07	F	21	Cognitive science		
N08	F	19	Statistics; psychology		
N09	F	22	Legal studies		
N10	М	30	Music; foreign languages		
N11	F	18	Neuroscience		
C01	М	64	Engineering; public health		
C02	М	32	Culinary arts		
C03	Μ	62	Communication arts; religion		
C04	М	49	Psychology		
C05	F	58	MBA		
C06	F	30	Foreign policy		
Technical participants (N = 11)					
T01	F	19	Computer science		
T02	F	21	Computer science		
T03	F	27	Computer science & HCI		
T04	М	25	Information technology		
T05	F	24	Electrical/CS engineering		
T06	М	26	Computer science		
T07	М	25	Information technology		
T08	М	23	Computer science		
T09	Μ	27	Software engineering		
T10	М	24	Software engineering		
T11*	М	32	Computer science		

Dr. Özgür Kafalı

Privacy Perceptions: Privacy Attitudes


Fall 2017 42 / 52

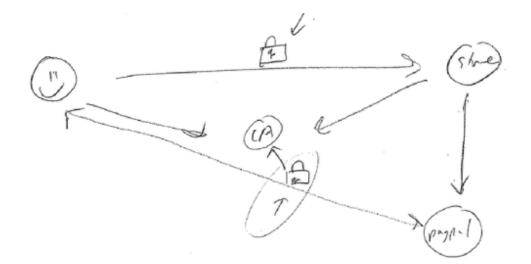
NC STATE UNIVERSITY

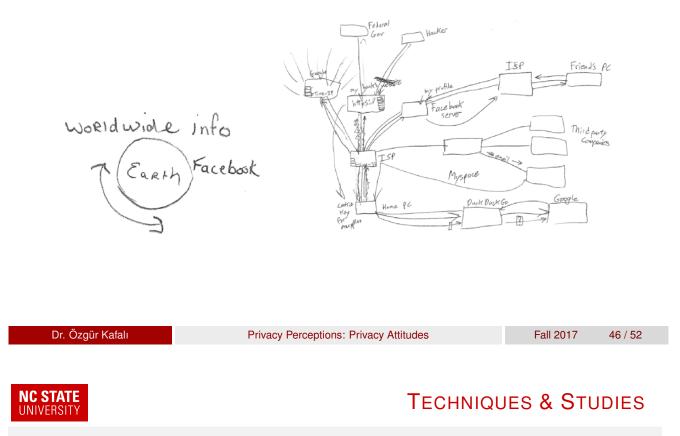

TECHNIQUES & STUDIES

Exercise: Internet as Service

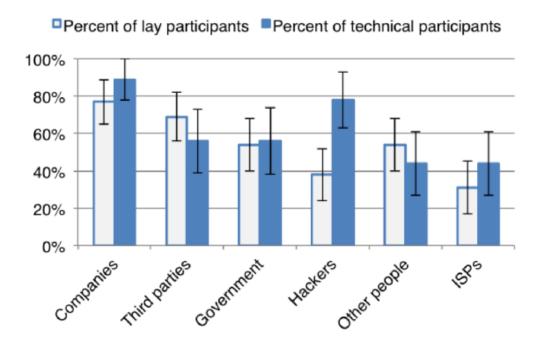
_

How to Use Neighbor's WiFi




TECHNIQUES & STUDIES

Exercise: Making Online Payment to a Shoe Store



Who Can See My Data?

Access to Data: Non technical vs Technical

Quotes from Participants

- Non technical: "I don't put [my credit card info] in when there's not like that little lock up on top of the screen. I think it's pretty secure."
- Technical: "The Internet is not designed to be private."
 "At the end of the day you're relying on correct implementations of logically sound security protocols, and historically most implementations aren't correct and most protocols aren't logically sound. So, it's just a question of an arms race of who's paying more attention."

Dr. Özgür Kafalı	Privacy Per	ceptions: Privacy Attitude	es	Fall 2017	48 / 52
C STATE NIVERSITY		т	ECHNIQU	JES & STU	JDIES
Protective A	ctions				
Types of protective action	# of lay participants who have used this type of N action (out of 13)	# of technical participants who have used this type of action (out of 9)	Α	ctions	
Proactive risk management	15 9 (69%)	6 (67%)	Use anti-virus progr Back up personal da Be cautious when us Change password re Do not use or use le Take care of physica Use tape to cover co Switch devices	ata sing public Wi-Fi gularly ss social media al safety of credit card	
Event-based risk management	8 5 (38%)	3 (33%)	Change email passw Do not accept many Do not give email a Do not open pop up Exit malicious webs Not sign up or not lo	friend requests ddress when asked s ite	
Controlling digital traces	15 10 (77%)	5 (56%)	Use anonymous sear Use cookie blocker Cut off address from	rch engine or other tracker blocker 1 package ormation shared online es, history g mode	
Securing connections	12 5 (38%)	7 (78%)	Encrypt data Watch for https in w Use Tor Use password to sec	vebsites	

What Prevents People from Taking Privacy Actions?

- I have nothing to hide
- Doing so would sacrifice effectiveness or convenience
- Poor usability of privacy protection tools
- Lack of procedural knowledge

Dr. Özgür Kafalı	Privacy Perceptions: Privacy Attitudes	Fall 2017	50 / 52
NC STATE UNIVERSITY	11	NCIDENT ANAI	LYSIS
	_		
Shoot all the I	Drones		

- News article: http://www.wdrb.com/story/29650818/hillview-manarrested-for-shooting-down-drone-cites-right-to-privacy
- Links are also on the course website

Things to Look For

- Root cause: What went wrong?
- If it was not intentional, what was the original aim?
- Affected parties
- Implications and similar problems
- Mitigation (using methods we have seen): Prevention, detection, recovery
- Take 10 minutes to look at the incident on your own
- Now discuss with your neighbor
- Also take a look at the summary report: https: //drive.google.com/file/d/0B3m-I0YVAv0EcnJiZUttTFhWeGs/view

Dr. Özgür Kafalı Privacy Perceptions: Privacy Attitudes	Fall 2017	52 / 52
---	-----------	---------