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PREVIOUSLY ON SOCIAL NETWORKS

Targeted Advertising

Online behavioral advertising definition
Types of targeted advertising
Types of cookies and how they work
Tools to mitigate privacy concerns of targeted advertising
People’s attitudes towards private browsing tools
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K-ANONYMITY PROBLEM

Problem Definition

Data owner, e.g., hospital
Has private dataset with user specific data
Goal: To share a version of the dataset with researchers

Dataset can help researchers to train better models
Results can help the data owner

Provide scientific guarantees that users in the dataset cannot be
re-identified
Data should remain practically useful
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APPLICATION DOMAINS

Real Problem

For, 87% (216M of 248M) of the US population
Uniquely identifiable based only on

5-digit ZIP code
Gender
Date of birth

Sweeney. Uniqueness of Simple Demographics in the US Population, 2000
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APPLICATION DOMAINS

Netflix Prize

In October 2006, Netflix offered a $1M prize for a 10%
improvement in its recommendation system
Released a training dataset for competitors to train their systems
Disclaimer: To protect customer privacy, all personal information
identifying individual customers has been removed and all
customer IDs have been replaced by randomly assigned IDs

Netflix is not the only movie-rating portal on the web
On IMDb, individuals can rate movies “not” anonymously
Researchers from University of Texas at Austin, linked Netflix
dataset with IMDb to de-anonymize the identity of some users
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APPLICATION DOMAINS

Differential Privacy

Provide guarantees for your released dataset

Formally
Maximize the accuracy of queries from statistical databases
While minimizing the chances of identifying its records
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TECHNIQUES & STUDIES

Studies

Look at two studies
Originators of k-anonymity
De-anonymizing the Netflix dataset
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TECHNIQUES & STUDIES

K-anonymity: A model for Protecting Privacy

Sweeney. K-anonymity: A model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 10(5):557–570, 2002
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TECHNIQUES & STUDIES

Re-identification by Linking
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TECHNIQUES & STUDIES

Re-identification of Individuals

William Weld: Governor of MA at the time
His medical record in the Group Insurance Commission (GIC) data
Lived in Cambridge, MA
From the voter list

Six people with his particular birth date
Three of them male
He was the only one in his ZIP code
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TECHNIQUES & STUDIES

Statistical Databases

Data: Person-specific information organized as a table of rows and
columns

Tuple: Corresponds to a row, describes the relationship among the
set of values for a person

Attribute: Corresponds to a column, describes a field or semantic
category of information
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TECHNIQUES & STUDIES

Quasi-Identifiers

Attributes that in combination can uniquely identify individuals

Such as ZIP, gender, and date of birth

Data owner should identify the quasi-identifier
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TECHNIQUES & STUDIES

Sensitive vs Nonsensitive Attributes
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TECHNIQUES & STUDIES

Exercise: Column Combinations

Table with three columns
Physician
Patient
Medication

Which combinations are sensitive?
R(Physician, Patient): Sensitive?
R(Physician, Medication): Sensitive?
R(Patient, Medication): Sensitive?
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TECHNIQUES & STUDIES

K-Anonymity: Formal Definition

Informally, your information contained in the released dataset
cannot be distinguished from at least k-1 other individuals whose
information also appear in the dataset

Formally,
Let RT(A1, . . . , An) be a table
Let QIRT be the quasi-identifier for RT
RT satisfies k-anonymity if and only if each sequence of values in
RT[QIRT ] appears with at least k occurrences
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TECHNIQUES & STUDIES

Methods to Achieve K-anonymity

Suppression: Values replaced with ‘*’
All or some values of a column may be replaced
Attributes such as “Name” or “Religion”

Generalization: Values replaced with a broader category
‘19’ of the attribute “Age” may be replaced with ‘≤ 20’
Replace ‘23’ with ‘20 < Age ≤ 30’
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TECHNIQUES & STUDIES

Example K-Anonymous Table

QI = {Race, Birth, Gender, ZIP}
k = 2
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TECHNIQUES & STUDIES

More Examples
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TECHNIQUES & STUDIES

Exercise: Make This Table 4-anonymous
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TECHNIQUES & STUDIES

One Solution
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TECHNIQUES & STUDIES

L-diversity

Machanavajjhala et al. L-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data,
1(1):1556–4681, 2007
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TECHNIQUES & STUDIES

L-diversity Solution
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TECHNIQUES & STUDIES

Exercise: L-diversity
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TECHNIQUES & STUDIES

L-diversity Blocks
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TECHNIQUES & STUDIES

L-diversity Concerns

Some medical conditions are more sensitive than others

Some medical conditions may indicate same disease
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TECHNIQUES & STUDIES

T-closeness

Measure semantic distance between concepts

Li et al. T-closeness: Privacy beyond k-anonymity and l-diversity. International Conference on Data Engineering, pages
106–115, 2007
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TECHNIQUES & STUDIES

Example T-closeness Table
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TECHNIQUES & STUDIES

Attacks against K-anonymity

3 common attacks

Unsorted matching attack
Complementary release attack
Temporal inference attack
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TECHNIQUES & STUDIES

Unsorted Matching Attack

Based on the order of rows in the released datasets

This problem is often ignored in real-world use

Easy to correct by randomly sorting the rows
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TECHNIQUES & STUDIES

Exercise: Unsorted Matching Attack
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TECHNIQUES & STUDIES

Complementary Release Attack
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TECHNIQUES & STUDIES

Complementary Release Attack: Linked Table

LT no longer satisfies the k-anonymity requirement
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TECHNIQUES & STUDIES

Exercise: Protection for Complementary Releases

How can you protect against this type of attack?
QIGT3 = QI ∪ {Problem}
GT1 is the basis of GT3
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TECHNIQUES & STUDIES

Temporal Inference Attack

Data collections are dynamic
Rows are added, removed, and updated
Similar to the previous problem of consequent releases

Let original table be T0 at time t = 0
RT0 is released for T0 satisfying k-anonymity
Assume some rows are added to T0 at time t (becomes Tt )
RTt is released for Tt

Linking RT0 and RTt might cause problems
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TECHNIQUES & STUDIES

Example: Temporal Inference Attack
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TECHNIQUES & STUDIES

Robust De-anonymization of Large Sparse Datasets

Narayanan and Shmatikov. Robust De-anonymization of Large Sparse Datasets. IEEE Symposium on Security and Privacy,
pages 111–125, 2008
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TECHNIQUES & STUDIES

Problem: Linking Databases

De-anonymization attacks

Linking datasets (public or private) together to gain additional
information about users

Even if sensitive attributes are not contained in the dataset, they
can be inferred with high accuracy
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TECHNIQUES & STUDIES

AOL Search Data

In 2006, AOL released 20 million web queries from 650,000 users
over a 3 month period
User names were removed, but there were still connections to
user accounts
New York Times journalists identified some individuals from the
search records by cross referencing them with phonebook listings

Reputation: Incident made it to “101 Dumbest Moments in
Business”
Violation: Lawsuit filed against AOL after a month

https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
http://www.nytimes.com/2006/08/09/technology/09aol.html? r=0
http://money.cnn.com/magazines/business2/101dumbest/2007/full list/index.html
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TECHNIQUES & STUDIES

Netflix Dataset

“Anonymous” movie ratings of 480,189 subscribers of Netflix
100,480,507 movie ratings
Between 1999 and 2005
Less than 1/10 of the entire 2005 database

Sparsity: Individual rows in the dataset include statistically rare
attributes
Is sparsity enough to identify individual rows?
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TECHNIQUES & STUDIES

Public IMDb Ratings
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TECHNIQUES & STUDIES

Research Questions

If the adversary knows a few movies that the user watched, can
the adversary learn all the movies that the user watched?

Can the adversary still identify if only a subset of the original
dataset is released?

Can the adversary still identify if some rows are perturbed?

Can the adversary still identify in the existence of wrong
knowledge about the user?
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TECHNIQUES & STUDIES

Assumptions

Adversary needs some background knowledge about the user
Movie ratings (only approximately)
Dates when ratings are entered (with a 14-day error margin)
Some of that knowledge can be completely wrong

Develop a “robust” algorithm uniquely identifies a user with high
accuracy
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TECHNIQUES & STUDIES

Sparsity

Each individual row contains values for a tiny fraction of the
attributes

For example, shopping online on Amazon

Or, rating movies on Netflix
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TECHNIQUES & STUDIES

Similarity

Map a pair of rows (users) to an interval [0, 1]

supp(r): Support of a row (the set of non-null attributes in a row)

Sim(r1, r2) =
∑

Sim(r1i ,r1i )
|supp(r1)∪supp(r2)|

You can also define similarity for attributes in a similar way, e.g., to
compute similarity of a pair of movies
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TECHNIQUES & STUDIES

Netflix Dataset Sparsity
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TECHNIQUES & STUDIES

De-anonymization

Adversary model:
Sample a row r randomly
Give background knowledge to adversary related to r
Subset of the supp(r): Might be perturbed or simply wrong
Background knowledge chosen arbitrarily

Adversary objective: Gain as much information about the user’s
attributes that isn’t already known
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TECHNIQUES & STUDIES

De-anonymization Algorithm: Inputs and Outputs

Input: Released subset D′ of database D
Input: Row r of interest
Input: Background knowledge Aux related to r

Output: A row r′, or
Output: A set of candidate rows with an associated probability
distribution
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TECHNIQUES & STUDIES

De-anonymization Algorithm: Steps

1 Scoring function: Assigns a numerical score to each row in D′

based on how well it matches Aux:
Compute Score(Aux, r′) for each r′ ∈ D′

Score(Aux, r′) = mini∈supp(Aux)Sim(Auxi , r ′i )

2 Matching criterion: Determine the matching set of rows:
M = {r′ ∈ D′: Score(Aux, r′) > α}

3 Row selection: Select one best-guess row or a set of candidates

Dr. Özgür Kafalı Web/Social Networks Privacy: K-anonymity Fall 2017 47 / 57



TECHNIQUES & STUDIES

Netflix Dataset Characteristics

Number of users with X ratings: X ≤ 100, X ≤ 1000
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TECHNIQUES & STUDIES

Results

With 8 movie ratings known (2 of them might be completely wrong)
And, dates having a 14-day error margin
99% of users can be uniquely identified

With 2 ratings and 3-day error dates, 68% of users
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TECHNIQUES & STUDIES

Results: Adversary Knows Exact Ratings
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TECHNIQUES & STUDIES

Results: Adversary Must Detect User is Not Present
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TECHNIQUES & STUDIES

Exercise: What are the Red and Green Bars?

Adversary only knows the movie ratings
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TECHNIQUES & STUDIES

Results: Movie Popularity
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TECHNIQUES & STUDIES

Results: Adversary Knows Number of Movies
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TECHNIQUES & STUDIES

Implications

Why would someone who (not anonymously) rates movies on
IMDb care about privacy of Netflix ratings?

Extract entire movie viewing history from Netflix
Infer political orientation
Infer religious views
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INCIDENT ANALYSIS

Hulu and Quora Disclosures

Hulu news article: http://www.reuters.com/article/2013/12/23/
us-hulu-privacy-lawsuit-idUSBRE9BM0OJ20131223
Quora news article: http://techcrunch.com/2012/08/14/after-
privacy-uproar-quora-backpedals-and-will-no-longer-show-data-
on-what-other-users-have-viewed/
Links are also on the course website
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INCIDENT ANALYSIS

Things to Look For

What are the similarities and differences between the two
incidents?
Mitigation (using methods we have seen): Prevention, detection,
recovery
Take 10 minutes to look at the incidents on your own

Now discuss with your neighbor
Also take a look at the summary reports

Hulu: https:
//drive.google.com/file/d/0B3m-I0YVAv0EWWhfR2t2YzlDQ1E/view
Quora: https:
//drive.google.com/file/d/0B3m-I0YVAv0EVW4tZjBUdXBHUjA/view
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