

CSC 495.002 – Lecture 6 Web/Social Networks Privacy: K-anonymity

Dr. Özgür Kafalı

North Carolina State University Department of Computer Science

Fall 2017

PREVIOUSLY ON SOCIAL NETWORKS

Targeted Advertising

- Online behavioral advertising definition
- Types of targeted advertising
- Types of cookies and how they work
- Tools to mitigate privacy concerns of targeted advertising
- People's attitudes towards private browsing tools

Problem Definition

- Data owner, e.g., hospital
- Has private dataset with user specific data
- Goal: To share a version of the dataset with researchers
 - Dataset can help researchers to train better models
 - Results can help the data owner
- Provide scientific guarantees that users in the dataset cannot be re-identified
- Data should remain practically useful

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	2 / 57
NC STATE UNIVERSITY	Applica		IAINS
Real Problem			

- For, 87% (216M of 248M) of the US population
- Uniquely identifiable based only on
 - 5-digit ZIP code
 - Gender
 - Date of birth

Netflix Prize

NC STATE

- In October 2006, Netflix offered a \$1M prize for a 10% improvement in its recommendation system
- Released a training dataset for competitors to train their systems
- Disclaimer: To protect customer privacy, all personal information identifying individual customers has been removed and all customer IDs have been replaced by randomly assigned IDs
- Netflix is not the only movie-rating portal on the web
- On IMDb, individuals can rate movies "not" anonymously
- Researchers from University of Texas at Austin, linked Netflix dataset with IMDb to de-anonymize the identity of some users

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	4 / 57
NC STATE UNIVERSITY	Applica		IAINS
Differential P	rivacy		

- Provide guarantees for your released dataset
- Formally
 - Maximize the accuracy of queries from statistical databases
 - While minimizing the chances of identifying its records

TECHNIQUES & STUDIES

Studies

Look at two studies

- Originators of k-anonymity
- De-anonymizing the Netflix dataset

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017 6 / 57

TECHNIQUES & STUDIES

K-anonymity: A model for Protecting Privacy

k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY¹

LATANYA SWEENEY

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA E-mail: latanya@cs.cmu.edu

Received May 2002

Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful? The solution provided in this paper includes a formal protection model named *k*-anonymity and a set of accompanying policies for deployment. A release provides *k*-anonymity protection if the information for each person contained in the release cannot be distinguished from at least *k*-1 individuals whose information also appears in the release. This paper also examines re-identification attacks that can be realized on releases that adhere to *k*-anonymity unless accompanying policies are respected. The *k*-anonymity protection model is important because it forms the basis on which the real-world systems known as Datafly, μ -Argus and *k*-Similar provide guarantees of privacy protection.

Keywords: data anonymity, data privacy, re-identification, data fusion, privacy.

Sweeney. K-anonymity: A model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002

Re-identification by Linking

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	8 / 57

NC STATE UNIVERSITY TECHNIQUES & STUDIES

Re-identification of Individuals

- William Weld: Governor of MA at the time
- His medical record in the Group Insurance Commission (GIC) data
- Lived in Cambridge, MA
- From the voter list
 - Six people with his particular birth date
 - Three of them male
 - He was the only one in his ZIP code

Statistical Databases

- <u>Data:</u> Person-specific information organized as a table of rows and columns
- Tuple: Corresponds to a row, describes the relationship among the set of values for a person
- <u>Attribute:</u> Corresponds to a column, describes a field or semantic category of information

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	10 / 57
NC STATE UNIVERSITY	TECHNIQU	JES <mark>& S</mark> TU	IDIES
Quasi-Identifiers			

- Attributes that in combination can uniquely identify individuals
- Such as ZIP, gender, and date of birth
- Data owner should identify the quasi-identifier

Sensitive vs Nonsensitive Attributes

Exercise: Column Combinations

- Table with three columns
 - Physician
 - Patient
 - Medication
- Which combinations are sensitive?
 - R(Physician, Patient): Sensitive?
 - R(Physician, Medication): Sensitive?
 - R(Patient, Medication): Sensitive?

K-Anonymity: Formal Definition

- Informally, your information contained in the released dataset cannot be distinguished from at least k-1 other individuals whose information also appear in the dataset
- Formally,
 - Let $RT(A_1, \ldots, A_n)$ be a table
 - Let QI_{RT} be the quasi-identifier for RT
 - RT satisfies k-anonymity if and only if each sequence of values in RT[QI_{RT}] appears with at least k occurrences

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	14 / 57
NC STATE UNIVERSITY	TECHNIQU	JES <mark>& S</mark> TU	JDIES

Methods to Achieve K-anonymity

- Suppression: Values replaced with '*'
 - All or some values of a column may be replaced
 - Attributes such as "Name" or "Religion"
- Generalization: Values replaced with a broader category
 - '19' of the attribute "Age" may be replaced with ' \leq 20'
 - Replace '23' with '20 < Age \leq 30'

Example K-Anonymous Table

	Race	Birth	Gender	ZIP	Problem
t1	Black	1965	m	0214*	short breath
t2	Black	1965	m	0214*	chest pain
t3	Black	1965	f	0213*	hypertension
t4	Black	1965	f	0213*	hypertension
t5	Black	1964	f	0213*	obesity
t6	Black	1964	f	0213*	chest pain
t7	White	1964	m	0213*	chest pain
t8	White	1964	m	0213*	obesity
t9	White	1964	m	0213*	short breath
t10	White	1967	m	0213*	chest pain
t11	White	1967	m	0213*	chest pain

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017 16 / 57

NC STATE UNIVERSITY

TECHNIQUES & STUDIES

More Examples

Race	ZIP		Race	ZIP		Race	ZIP
Asian	02138		Person	02138		Asian	02130
Asian	02139		Person	02139		Asian	02130
Asian	02141		Person	02141		Asian	02140
Asian	02142		Person	02142		Asian	02140
Black	02138		Person	02138		Black	02130
Black	02139		Person	02139		Black	02130
Black	02141		Person	02141		Black	02140
Black	02142		Person	02142		Black	02140
White	02138		Person	02138		White	02130
White	02139		Person	02139		White	02130
White	02141		Person	02141		White	02140
White	02142		Person	02142		White	02140
F	Ъ	-	G	[1	-	G	Τ2

Exercise: Make This Table 4-anonymous

	Zip code	Age	Nationality	Condition
1	27609	18	Chinese	Heart Disease
2	27615	19	American	Heart Disease
3	26724	50	Indian	Cancer
4	26724	55	Chinese	Heart Disease
5	27615	21	Japanese	Viral Infection
6	26725	47	American	Viral Infection
7	27609	23	American	Viral Infection
8	27609	31	American	Cancer
9	27615	36	Japanese	Cancer
10	26725	49	American	Viral Infection
11	27609	37	Indian	Cancer
12	27615	35	American	Cancer

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017 18 / 57

TECHNIQUES & STUDIES

One Solution

	Zip code	Age	Nationality	Condition
1	276**	<30	*	Heart Disease
2	276**	<30	*	Heart Disease
3	2672*	≧40	*	Cancer
4	2672*	≧40	*	Heart Disease
5	276**	<30	*	Viral Infection
6	2672*	≧40	*	Viral Infection
7	276**	<30	*	Viral Infection
8	276**	3*	*	Cancer
9	276**	3*	*	Cancer
10	2672*	≧40	*	Viral Infection
11	276**	3*	*	Cancer
12	276**	3*	*	Cancer

L-diversity

276**	3*	*	Heart Disease
276**	3*	*	Cancer
276**	3*	*	Viral Infection
276**	3*	*	Flu

Machanavajjhala et al. L-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data, 1(1):1556–4681, 2007

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017 20 / 57

NC STATE UNIVERSITY

TECHNIQUES & STUDIES

L-diversity Solution

276**	3*	*
276**	3*	*
276**	3*	*
276**	3*	*

Exercise: L-diversity

	Zip code	Age	Nationality	Condition
1	276**	<30	*	Cancer
2	276**	<30	*	Cancer
3	2672*	≧40	*	Flu
4	2672*	≧40	*	Heart Disease
5	276**	<30	*	Heart Disease
6	2672*	≧40	*	Heart Disease
7	276**	<30	*	Heart Disease
8	276**	3*	*	Flu
9	276**	3*	*	Heart Disease
10	2672*	≧40	*	Flu
11	276*	3*	*	Flu
12	276**	3*	*	Heart Disease

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017 22 / 57

NC STATE UNIVERSITY

TECHNIQUES & STUDIES

L-diversity Blocks

			Zip code	Age	Nationality	Condition
		1	276**	<30	*	Cancer
_		2	276**	<30	*	Cancer
		7	276**	<30	*	Heart Disease
		5	276**	<30	*	Heart Disease
		3	2672*	≧40	*	Flu
		4	2672*	≧40	*	Heart Disease
		6	2672*	≧40	*	Heart Disease
		10	2672*	≧40	*	Flu
	_	8	276**	3*	*	Flu
		9	276**	3*	*	Heart Disease
\neg		11	276*	3*	*	Flu
		12	276**	3*	*	Heart Disease

- Some medical conditions are more sensitive than others
- Some medical conditions may indicate same disease

Measure semantic distance between concepts

Li et al. T-closeness: Privacy beyond k-anonymity and I-diversity. International Conference on Data Engineering, pages 106–115, 2007

Example T-closeness Table

Zip code	Age	Disease
4767*	<40	Gastric ulcer
4767*	<40	Stomach cancer
4767*	<40	Pneumonia
4790*	>39	Gastritis
4790*	>39	Flu
4790*	>39	Bronchitis
2760*	<40	Gastritis
2760*	<40	Bronchitis
2760*	<40	Stomach cancer

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017 26 / 57

NC STATE UNIVERSITY

TECHNIQUES & STUDIES

Attacks against K-anonymity

3 common attacks

- Unsorted matching attack
- Complementary release attack
- Temporal inference attack

TECHNIQUES & STUDIES

Unsorted Matching Attack

- Based on the order of rows in the released datasets
- This problem is often ignored in real-world use
- Easy to correct by randomly sorting the rows

Web/Social Networks Privacy: K-anonymity

Fall 2017 28 / 57

TECHNIQUES & STUDIES

Exercise: Unsorted Matching Attack

Race	ZIP		Race	ZIP	Race	ZIP
Asian	02138		Person	02138	Asian	02130
Asian	02139		Person	02139	Asian	02130
Asian	02141		Person	02141	Asian	02140
Asian	02142		Person	02142	Asian	02140
Black	02138		Person	02138	Black	02130
Black	02139		Person	02139	Black	02130
Black	02141		Person	02141	Black	02140
Black	02142		Person	02142	Black	02140
White	02138		Person	02138	White	02130
White	02139		Person	02139	White	02130
White	02141		Person	02141	White	02140
White	02142		Person	02142	White	02140
F	PT		G	[1	G	Γ2

Complementary Release Attack

Race	BirthDate	Gender	ZIP	Problem		
black	9/20/1965	male	02141	short of breath		
black	2/14/1965	male	02141	chest pain		
black	10/23/1965	female	02138	painful eye		
black	8/24/1965	female	02138	wheezing		
black	11/7/1964	female	02138	obesity		
black	12/1/1964	female	02138	chest pain		
white	10/23/1964	male	02138	short of breath		
white	3/15/1965	female	02139	hypertension		
white	8/13/1964	male	02139	obesity		
white	5/5/1964	male	02139	fever		
white	2/13/1967	male	02138	vomiting		
white	3/21/1967	male	02138	back pain		
PT						

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
person	1965	female	0213*	painful eye
person	1965	female	0213*	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1964	male	0213*	short of breath
person	1965	female	0213*	hypertension
white	1964	male	0213*	obesity
white	1964	male	0213*	fever
white	1967	male	02138	vomiting
white	1967	male	02138	back pain
		GT1		

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
black	1965	female	02138	painful eye
black	1965	female	02138	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1960-69	male	02138	short of breath
white	1960-69	human	02139	hypertension
white	1960-69	human	02139	obesity
white	1960-69	human	02139	fever
white	1960-69	male	02138	vomiting
white	1960-69	male	02138	back pain
		GT3		

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017 30 / 57

NC STATE UNIVERSITY

NC STATE

UNIVERSITY

TECHNIQUES & STUDIES

Complementary Release Attack: Linked Table

Race	BirthDate	Gender	ZIP	Problem		
black	9/20/1965	male	02141	short of breath		
black	2/14/1965	male	02141	chest pain		
black	10/23/1965	female	02138	painful eye		
black	8/24/1965	female	02138	wheezing		
black	11/7/1964	female	02138	obesity		
black	12/1/1964	female	02138	chest pain		
white	10/23/1964	male	02138	short of breath		
white	3/15/1965	female	02139	hypertension		
white	8/13/1964	male	02139	obesity		
white	5/5/1964	male	02139	fever		
white	2/13/1967	male	02138	vomiting		
white	3/21/1967	male	02138	back pain		
PT						

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
black	1965	female	02138	painful eye
black	1965	female	02138	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1964	male	02138	short of breath
white	1965	female	02139	hypertension
white	1964	male	02139	obesity
white	1964	male	02139	fever
white	1967	male	02138	vomiting
white	1967	male	02138	back pain

• LT no longer satisfies the k-anonymity requirement

Exercise: Protection for Complementary Releases

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
person	1965	female	0213*	painful eye
person	1965	female	0213*	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1964	male	0213*	short of breath
person	1965	female	0213*	hypertension
white	1964	male	0213*	obesity
white	1964	male	0213*	fever
white	1967	male	02138	vomiting
white	1967	male	02138	back pain
		CT1		

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
black	1965	female	02138	painful eye
black	1965	female	02138	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1960-69	male	02138	short of breath
white	1960-69	human	02139	hypertension
white	1960-69	human	02139	obesity
white	1960-69	human	02139	fever
white	1960-69	male	02138	vomiting
white	1960-69	male	02138	back pain
		GT3		

- How can you protect against this type of attack?
- $QI_{GT3} = QI \cup \{Problem\}$
- GT1 is the basis of GT3

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	32 / 57

NC STATE UNIVERSITY

TECHNIQUES & STUDIES

Temporal Inference Attack

- Data collections are dynamic
- Rows are added, removed, and updated
- Similar to the previous problem of consequent releases
- Let original table be T₀ at time t = 0
- RT₀ is released for T₀ satisfying k-anonymity
- Assume some rows are added to T₀ at time t (becomes T_t)
- RT_t is released for T_t
- Linking RT₀ and RT_t might cause problems

Example: Temporal Inference Attack

Race	BirthDate	Gender	ZIP	Problem		
black	9/20/1965	male	02141	short of breath		
black	2/14/1965	male	02141	chest pain		
black	10/23/1965	female	02138	painful eye		
black	8/24/1965	female	02138	wheezing		
black	11/7/1964	female	02138	obesity		
black	12/1/1964	female	02138	chest pain		
white	10/23/1964	male	02138	short of breath		
white	3/15/1965	female	02139	hypertension		
white	8/13/1964	male	02139	obesity		
white	5/5/1964	male	02139	fever		
white	2/13/1967	male	02138	vomiting		
white	3/21/1967	male	02138	back pain		
PT						

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
person	1965	female	0213*	painful eye
person	1965	female	0213*	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1964	male	0213*	short of breath
person	1965	female	0213*	hypertension
white	1964	male	0213*	obesity
white	1964	male	0213*	fever
white	1967	male	02138	vomiting
white	1967	male	02138	back pain

GT1

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
black	1965	female	02138	painful eye
black	1965	female	02138	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1960-69	male	02138	short of breath
white	1960-69	human	02139	hypertension
white	1960-69	human	02139	obesity
white	1960-69	human	02139	fever
white	1960-69	male	02138	vomiting
white	1960-69	male	02138	back pain
		GT3		

Dr. Özgür Kafalı

Web/Social Networks Privacy: K-anonymity

Fall 2017 34 / 57

NC STATE UNIVERSITY

NC STATE

UNIVERSIT

TECHNIQUES & STUDIES

Robust De-anonymization of Large Sparse Datasets

Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov The University of Texas at Austin

Abstract

We present a new class of statistical deanonymization attacks against high-dimensional micro-data, such as individual preferences, recommendations, transaction records and so on. Our techniques are robust to perturbation in the data and tolerate some mistakes in the adversary's background knowledge.

We apply our de-anonymization methodology to the Netflix Prize dataset, which contains anonymous movie ratings of 500,000 subscribers of Netflix, the world's largest online movie rental service. We demonstrate that an adversary who knows only a little bit about an individual subscriber can easily identify this subscriber's record in the dataset. Using the Internet Movie Database as the source of background knowledge, we successfully identified the Netflix records of known users, uncovering their apparent political preferences and other potentially sensitive information. and sparsity. Each record contains many attributes (*i.e.*, columns in a database schema), which can be viewed as dimensions. Sparsity means that for the average record, there are no "similar" records in the multi-dimensional space defined by the attributes. This sparsity is empirically well-established [7, 4, 19] and related to the "fat tail" phenomenon: individual transaction and preference records tend to include statistically rare attributes.

Our contributions. Our first contribution is a formal model for privacy breaches in anonymized micro-data (section 3). We present two definitions, one based on the probability of successful de-anonymization, the other on the amount of information recovered about the target. Unlike previous work [25], we do not assume a priori that the adversary's knowledge is limited to a fixed set of "quasi-identifier" attributes. Our model thus encompasses a much broader class of de-anonymization.

Narayanan and Shmatikov. Robust De-anonymization of Large Sparse Datasets. IEEE Symposium on Security and Privacy, pages 111–125, 2008

Problem: Linking Databases

- De-anonymization attacks
- Linking datasets (public or private) together to gain additional information about users
- Even if sensitive attributes are not contained in the dataset, they can be inferred with high accuracy

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	36 / 57

UNIVERSITY

NC STATE

TECHNIQUES & STUDIES

AOL Search Data

- In 2006, AOL released 20 million web queries from 650,000 users over a 3 month period
- User names were removed, but there were still connections to user accounts
- New York Times journalists identified some individuals from the search records by cross referencing them with phonebook listings
- Reputation: Incident made it to "101 Dumbest Moments in Business"
- Violation: Lawsuit filed against AOL after a month

https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/ http://www.nytimes.com/2006/08/09/technology/09aol.html?_r=0 http://money.cnn.com/magazines/business2/101dumbest/2007/full_list/index.html

Netflix Dataset

- "Anonymous" movie ratings of 480,189 subscribers of Netflix
- 100,480,507 movie ratings
- Between 1999 and 2005
- Less than 1/10 of the entire 2005 database
- Sparsity: Individual rows in the dataset include statistically rare attributes
- Is sparsity enough to identify individual rows?

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	38 / 57

TECHNIQUES & STUDIES

Public IMDb Ratings

Find Movies, TV shows, Celebrities an Movies, TV & Showtimes & Celebrities an A Photos	d more News & Community	All • Watchlist •	▼ Q IMBbPro ▼ Hep f ♥ D f Sign in with Facebook Other Son in options
IMDb Charts Top Rated Movies Top 250 as rated by IMDb Users		< SHARE	You Have Seen 0 /250 (0%)
Showing 250 Titles Rank & Title	Sort by: Rank IMDb Rating	ing 🗸 计 Your Rating	Hide titles I've seen
1. The Shawshank Redemption (1994)	☆ 9.2	\$ 1	Box Office Most Popular Movies
2. The Godfather (1972)	★ 9.2	\$ 1	Top Rated Movies Top Rated English Movies Most Popular TV Top Rated TV
3. The Godfather: Part II (1974)	☆ 9.0	\$ H	Top Rated Indian Movies Lowest Rated Movies
4. The Dark Knight (2008)	★ 9.0	☆ H	Top Rated Movies by Genre
5. 12 Angry Men (1957)	* 8.9	☆ 🕇	Adventure Animation Blography Comedy
6. Schindler's List (1993)	★ 8.9	☆ +	Crime Drama Family Fantasy
7. Pulp Fiction (1994)	★ 8.9	☆ †	Film-Noir History Horror Music
8. The Lord of the Rings: The Return of the King (200	3) 🖕 8.9	☆ †	Musical Mystery Romance Sci-Fi
9. The Good, the Bad and the Ugly (1966)	★ 8.8	☆ ‡	Sport Thriller War Western
10. Fight Club (1999)	* 8.8	☆ <u>+</u>	

Research Questions

- If the adversary knows a few movies that the user watched, can the adversary learn all the movies that the user watched?
- Can the adversary still identify if only a subset of the original dataset is released?
- Can the adversary still identify if some rows are perturbed?
- Can the adversary still identify in the existence of wrong knowledge about the user?

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	40 / 57
NC STATE UNIVERSITY	TECHNIQ	JES <mark>& S</mark> TUI	DIES
Assumptions			

- Adversary needs some background knowledge about the user
- Movie ratings (only approximately)
- Dates when ratings are entered (with a 14-day error margin)
- Some of that knowledge can be completely wrong
- Develop a "robust" algorithm uniquely identifies a user with high accuracy

- Each individual row contains values for a tiny fraction of the attributes
- For example, shopping online on Amazon
- Or, rating movies on Netflix

- Map a pair of rows (users) to an interval [0, 1]
- supp(r): Support of a row (the set of non-null attributes in a row)

• Sim(
$$r_1$$
, r_2) = $\frac{\sum Sim(r_1, r_1)}{|supp(r_1) \cup supp(r_2)|}$

• You can also define similarity for attributes in a similar way, e.g., to compute similarity of a pair of movies

TECHNIQUES & STUDIES

Netflix Dataset Sparsity

TECHNIQUES & STUDIES

De-anonymization

• Adversary model:

- Sample a row r randomly
- Give background knowledge to adversary related to r
- Subset of the supp(r): Might be perturbed or simply wrong
- Background knowledge chosen arbitrarily
- Adversary objective: Gain as much information about the user's attributes that isn't already known

De-anonymization Algorithm: Inputs and Outputs

- Input: Released subset D' of database D
- Input: Row r of interest
- Input: Background knowledge Aux related to r
- Output: A row r', or
- Output: A set of candidate rows with an associated probability distribution

De-anonymization Algorithm: Steps

 Scoring function: Assigns a numerical score to each row in D' based on how well it matches Aux: Compute Score(Aux, r') for each r' ∈ D' Score(Aux, r') = min_{i∈supp(Aux)}Sim(Aux_i, r'_i)

- 2 Matching criterion: Determine the matching set of rows: $\overline{M} = \{r' \in D': \text{ Score}(Aux, r') > \alpha\}$
- Bow selection: Select one best-guess row or a set of candidates

Netflix Dataset Characteristics

• Number of users with X ratings: X \leq 100, X \leq 1000

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	48 / 57
NC STATE UNIVERSITY	TECHNIQU	JES & STU	IDIES
Results			

- With 8 movie ratings known (2 of them might be completely wrong)
- And, dates having a 14-day error margin
- 99% of users can be uniquely identified
- With 2 ratings and 3-day error dates, 68% of users

Results: Adversary Knows Exact Ratings

TECHNIQUES & STUDIES

Results: Adversary Must Detect User is Not Present

Exercise: What are the Red and Green Bars?

• Adversary only knows the movie ratings

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	52 / 57

NC STATE UNIVERSITY

TECHNIQUES & STUDIES

Results: Movie Popularity

Results: Adversary Knows Number of Movies

- Why would someone who (not anonymously) rates movies on IMDb care about privacy of Netflix ratings?
- Extract entire movie viewing history from Netflix
- Infer political orientation
- Infer religious views

Hulu and Quora Disclosures

- Hulu news article: http://www.reuters.com/article/2013/12/23/ us-hulu-privacy-lawsuit-idUSBRE9BM0OJ20131223
- Quora news article: http://techcrunch.com/2012/08/14/afterprivacy-uproar-quora-backpedals-and-will-no-longer-show-dataon-what-other-users-have-viewed/
- Links are also on the course website

Dr. Özgür Kafalı	Web/Social Networks Privacy: K-anonymity	Fall 2017	56 / 57
NC STATE UNIVERSITY		INCIDENT ANALYS	

Things to Look For

- What are the similarities and differences between the two incidents?
- Mitigation (using methods we have seen): Prevention, detection, recovery
- Take 10 minutes to look at the incidents on your own
- Now discuss with your neighbor
- Also take a look at the summary reports
 - Hulu: https: //drive.google.com/file/d/0B3m-I0YVAv0EWWhfR2t2YzIDQ1E/view
 - Quora: https: //drive.google.com/file/d/0B3m-I0YVAv0EVW4tZjBUdXBHUjA/view