PREVIOUSLY ON AI FOR PRIVACY

Privacy Requirements Engineering

- Functional requirements and how they might have security and privacy implications
- Phases of requirements engineering
- Threat modeling
- Formal specification of privacy requirements and automated identification of conflicts
Exercise: Privacy Implications

- Assume you are developing a social application:
 - Determine how many users are in close proximity
 - Recommend an activity that they can do together

- First, determine a couple of functional requirements
- Then, identify related privacy requirements
 - How would you protect sensitive user information?
 - Access control requirements: Who should access what information?
 - Do you need to log any user actions in case something goes wrong?

Agents and Reasoning Problem

Problem Definition

- **Software agent**: An intelligent entity that acts on behalf of a user

- **Multiagent systems (MAS)**: A collection of agents
 - Collaboration
 - Coordination
 - Competition

- Design and implement a MAS to solve a privacy problem
Overview of Problem Domains

- Resolving multi-party privacy concerns via argumentation
- Negotiating privacy preferences
- Formal policy specification and analysis via semantic reasoning

Privacy-aware Agents for Pervasive Healthcare

- Help developers design privacy-aware systems
- Handle threats raised by pervasive technology

Dynamic hospital environment:
- High availability
- Careful attention to patients
- Confidentiality
- Rapid response to emergencies
- Constant coordination with colleagues
Agent Reasoning Cycle

Salsa Agent Interface
Salsa Agent Specification

```
<User agent>
  register()
  sendPolicy()
  login()
  userRequest(type, QoP, QoPRequired)
  sendCommandRequest(printer)
  sendTicketRequest()
  sendToken()
  sendContract()
</User agent>

<Agent directory>
  notify()
  adaptInterface()
</Agent directory>

<Agent tasker>
</Agent tasker>

<Users and agents>
  sendNotification()
</Users and agents>

<Content-aware privacy client>
  subscribe()
</Content-aware privacy client>

<Service agent>
</Service agent>
```

Quality of Privacy
Multi-party Privacy

Context
- Individual preferences
- Generated arguments

Multi-party Privacy: Friends Scenario I

Picture and Context

Relationship: Friends (92.2%)

Sensitivity rating: $\mu = 1.56$ ($\sigma = 0.96$)

Sentiment rating: $\mu = 1.77$ ($\sigma = 1.46$)

Description

Tim, Ashley, and Jerry just graduated. Tim’s father took the picture above after the graduation ceremony. Tim wants to upload the picture to his social media account.

Arguments

Positive consequence argument. People we know will be happy to see that we are finally done with college.

Negative consequence argument. Our gestures are not appropriate for a moment like this; people might think that we did not take our college time seriously.

Exceptional case argument. This is not like any of our other pictures. It was our graduation, which happens only once in our lifetimes.
Multi-party Privacy: Friends Scenario II

Picture and Context

Relationship: Friends (98.3%)
Sensitivity rating: $\mu = 3.29$ ($\sigma = 1.16$)
Sentiment rating: $\mu = 3.82$ ($\sigma = 1.11$)

Description

Three friends, Santosh, Arun, and Nitin, decided to perform some stunts on a motorcycle. Unfortunately, while performing a stunt, Arun and Nitin had a minor accident. Santosh took the picture below at that very moment. Santosh wants to upload the picture to his social media account.

Arguments

Positive consequence argument. Fortunately, none of us got hurt. This picture makes anyone who sees it laugh out loud.

Negative consequence argument. People looking at this picture may think that we are reckless drivers, which is not true.

Exceptional case argument. Motorbike stunts are not something we do everyday.

Multi-party Privacy: Colleagues Scenario I

Picture and Context

Relationship: Colleagues (94.4%)
Sensitivity rating: $\mu = 1.77$ ($\sigma = 1.10$)
Sentiment rating: $\mu = 2.83$ ($\sigma = 0.92$)

Description

Maria, Bonita, and Felipe, three junior employees in a company, attend a business lunch in which they meet their seniors. One of the other employees took the following picture and sent it to Maria. Maria wants to upload the picture to her social media account.

Arguments

Positive consequence argument. This picture shows that we are making good progress in our careers.

Negative consequence argument. This was a professional event and our seniors might want to keep it private.

Exceptional case argument. This is an exceptional event since we attended a professional party for the first time.
Multi-party Privacy: Colleagues Scenario II

Relationship: Colleagues (92.9%)
Sensitivity rating: $\mu = 3.26$ ($\sigma = 1.41$)
Sentiment rating: $\mu = 2.46$ ($\sigma = 1.50$)

Picture and Context

Jerry, Laura, and Sabrina work together in a company. They were asked to attend the Christmas party dressed. However, a guy in their company (the one in pink dress) brought the whole dressing to a new level. They took the following picture at the party. Jerry wants to upload the picture to his social media account, a few days after the party.

Description

Arguments

Positive consequence argument. People think that I have a boring life because I work at a boring place; this will prove them wrong.

Negative consequence argument. This is embarrassing; people will pick on us because of this picture.

Exceptional case argument. This is an exceptional event since a Christmas party happens only once a year.

Argumentation Frameworks

- An Argumentation Framework (AF) is a pair $<\text{Arg}, \text{Att}>$
- Arg: Set of arguments
- $\text{Att} \subseteq \text{Arg} \times \text{Arg}$: Attacks between arguments
- Represented as a graph

Application Domains

Argumentation Example: Decide on Activity

- **A:** Football \leftarrow Wea \leftrightarrow Sun
- **A:** Ballet \leftarrow Ex? \leftrightarrow C: Hiking

(a) Alice’s internal AF

- **B:** Football \leftarrow LikeSport? \leftrightarrow EnjoyTennis
- **B:** Ballet \leftrightarrow C: Facebook

(b) Bob’s internal AF

- Alice prefers going to the ballet over watching football
- Bob prefers the opposite

Privacy Preserving Strategies

- Come up with a strategy to meet certain desired properties
 - Both go to the ballet
 - Both watch football

- **Feasible:** Assigned action should be doable for agent
- **Acceptable:** All constraints should be satisfied
- **Socially optimal:** Ideal preferences are complied with
- **Privacy preserving:** Only necessary information is disclosed
Argumentation Dialogue

- Alice (defender) puts forward argument “Hiking” for “Ballet”
- Bob (challenger) attacks “Hiking” with “Facebook”
- Alice has no more moves
- Thus, “Ballet” is not feasible

- Bob (defender) puts forward argument “Sun” for “Football”
- Alice (challenger) has no more moves
- Thus, “Football” is feasible

Resolving Privacy Disputes

- Generate facts and assumptions from an ontology
- Enrich ontology by requesting new information
- Decide whether a content should be shared
Negotiation Agent for Permission Management

An Automated Negotiation Agent for Permission Management

Tim Baarslag
Carinna Wawro and Jonathan
(104X KG Amherst
tbaarslag@cs.uo

Alper T. Alan, Richard Gomer
University of Southampton
Southampton, S017 1BJ
(alaalan.r.gomer@soton.ac.uk

Mudasser Alam
University of Oxford
Oxford, UK
moody@robots.ox.ac.uk

Abstract

The digital economy is based on data sharing yet citizens have little control about how their personal data is being used. While data management during web and app-based use is already a challenge, as the internet of Things (IoT) scales up, the number of devices accessing and requiring personal data will grow beyond what a person can manually sort in terms of data access requests. Therefore, techniques and studies for a scalable and providing active consent mechanism for data sharing have become more important in digital privacy. To address this challenge, we introduce a novel agent-based approach to negotiate for permission to exchange personal data between users and services. Our agent approach is based on learned preferences from actual users. To enable our agent, we developed an environment to simulate users and their privacy policies. This environment was used to test our agents. We have shown that the agents are able to effectively capture the preferences and negotiate on the users’ behalf. Furthermore, a human-in-the-loop was employed, as we conducted user engagement trials for the system. Understanding how interaction dynamics with agent-based techniques can be improved is a key step to support effective deployment of negotiating agents in real-life settings and within the IoT context to provide.

Motivation

- Number of devices/apps accessing personal data increases everyday
- People cannot keep track of all such requests
- Privacy policies: Never read, vague, and lack flexibility
- Automated methods are required to manage privacy preferences at scale
- Make meaningful decisions on behalf of the user while minimizing user burden
- Tradeoff between monetary reward and privacy
Automated Negotiation Methods

- Alternating offers protocol
 - Agents take turns to present offers
 - After an offer is made, the opponent can
 - Accept the current offer
 - Or, make a counteroffer

- Other variations of alternating offers protocol
 - Multiple issues: Price, color, performance, etc
 - Multilateral: More than two parties involved

Sample Negotiation Process
Negotiation Strategy

- **Utility**: What the agent gains if negotiation is successfully terminated

- **Objective**: Maximize utility at the end of the negotiation
 - Accept an offer if gained utility is above a threshold
 - Generate counteroffer based on user’s preferences and a history of offers

Negotiation Tool
Study Setting

- 3,090 units of data (content) shared out of 343,709
- Participants: 15% Fundamentalists, 79% Pragmatists, 6% Unconcerned

Results
Limitations

- Filter bubble effect and padded room effect

- **Filter bubble effect:** Users on social media are disproportionately exposed to views that they already agree with

- **Padded room effect:** Mechanisms intended to decrease discomfort or improve safety actually prevent exploration and prevent beneficial change